
CSS Services

Naveen Hota


18 January 1995 

111-CD-000-018 NH-1 



CSS Services 

Object Services (OS) 

Operating System & OSI Levels of Transport, Network, Data and Physical 

Application Domain 

SDPS FOS MSS 

Common Facilities 

File 
Access 

Virtual 
Terminal 

Bulletin 
Board 

Event 
Logger 

EMail 

Distributed Object Framework (DOF) 

IDL Interface 

Interface 
Mgr 

GenObject 

Server 

Time EventsThreads 

Message 
Passing 

SecurityDirectory/ 
Naming 

Life Cycle 

705-CD-003-001 NH-2 



Roadmap 

• Common Facilities 
• Object Services (OS) 
•	 Distributed Object Framework (DOF) 

- Client Server Concepts 
- Interface 
- Client/Server Application Development 

•	 Communication Mechanisms 
- Message Passing 
- Deferred Synchronous Message Passing Scenario 
- Communication Mechanisms Summary 

705-CD-003-001 NH-3 



Common Facilities 

Common facilities are high level services with uniform semantics that are 
shared across applications. 

•	 File Access - provides file transfer and remote file access capabilities 
across hosts in a network environment. This service includes 
kerberized ftp. 

•	 E-Mail - provides the functionality to manage electronic mail messages 
for M&O staff and applications. 

•	 Bulletin Board - provides a forum for sharing ECS related information 
to the users. 

•	 Virtual Terminal - provides users the capability to remotely log into 
designated ECS hosts. This service includes kerberized telnet and X. 

•	 Event Logger - enables applications to record information to 
designated log files. 

705-CD-003-001 NH-4 



Object Services 

• Low level building blocks 
• ECS applications interact with them transparently through DOF 
•	 Object Services provided in ECS are 

- Directory/Naming 
- Security 
- Threads 
- Time 
- Event 
- Lifecycle 
- Message Passing 

705-CD-003-001 NH-5 



Object Services (cont.) 

• Directory/Naming 
- Host lookup and binding information. 
- Location transparency. 
- Replication, distribution and caching. 
- BIND (DNS), GDS (X.500), and CDS (OSF) namespaces. 
- Extend the namespace with additional application specific 

information. 
- Examples: 

Locate ECS services/resources. 
FOS Planning and Scheduling processes registering interest in 
receiving updated schedules from the Resource model. 

• Time 
- Provides mechanisms to keep host clocks in network environments 

approximately in sync. 
- Example: Timestamps in History Logs. 

705-CD-003-001 NH-6 



Object Services (cont.) 

• Security 
- Protects distributed resources through 

Authentication 
Authorization 
Data integrity 
Data privacy 

- Provides customized authentication and authorization class 
libraries for ACL management. 

- Examples: ECS Resource Access, User Login. 
• Threads 

- Provides an efficient and portable way for asynchronous and 
concurrent processing (Posix 1003.4a). 

- Example: Multiple server threads to process client calls. 

705-CD-003-001 NH-7 



Object Services (cont.) 

• Event 
- Provides asynchronous communication between objects with clear 

de-coupling. 
- Examples: Short broadcasts of system messages. 

• Lifecycle 
- Provides client functionality to transparently access inactive 

services. 
- Examples: Startup of application servers. 

• Message Passing 
- Provides asynchronous and deferred synchronous message 

passing between processes. 
- Examples: Real time telemetry data between the FOS DECOM and 

the User Interface. 

705-CD-003-001 NH-8 



Roadmap 

• Common Facilities 
• Object Services (OS) 
•	 Distributed Object Framework (DOF) 

- Client Server Concepts 
- Interface 
- Client/Server Application Development 

•	 Communication Mechanisms 
- Message Passing 
- Deferred Synchronous Message Passing Scenario 
- Communication Mechanisms Summary 

705-CD-003-001 NH-9 



Distributed Object Framework 

Client Server

DOF 

DOF 

Services 
Object 

705-CD-003-001 NH-10 



Distributed Object Framework (cont.) 

•	 Object Oriented (OO) layer on top of the Object Services for 
developing the ECS client/server applications. 

• Implementation via RPCs. 
• Clear separation between interface and implementation. 
•	 Isolates the application developers from low level communication 

programming. 
•	 Provides OO libraries from which the applications inherit 

functionality. 

705-CD-003-001 NH-11 



Migration to Client/Server 

Proxy 

Implementation 

Interface 

DOF (locate, bind, authenticate, authorize.) 

Traditional Application 

Client Server 

705-CD-003-001 NH-12 



Migration to Client/Server (cont.) 

Manager 

Comm. Stubs 

DOF (locate, bind, authenticate, authorize.) 

Traditional Application 

Client Server 

Interface 

Implementation 

Proxy 

Impl 1 

Impl 2 

705-CD-003-001 NH-13 



Client/Server Application 
Components 

DOF/IDL generated files 

DOF 
Generic 
Classes 

Client Obj. Def. 
Client Obj. Impl. 

Client stub 

Client Application 

Client Development 

Server Obj. Impls. 
Server Application 

Server Obj. Def. 
Server Manager. 

Global Server 
Server Stub 

Server Development 

{ 

Lookup 
Authentication 

Registration 
Authentication 

Protocol 
Listening 
Cleanup 

Authorization 

Select Server 
Implementation 

Programmer developed files 
DOF classes 
Functionality 

705-CD-003-001 NH-14




DOF Interface 

• Provides generic classes for distributed client/server applications. 
• Uses Object Services: Naming, Security, Threads and Time. 
•	 Client class inherits from “Interface” class. 

- Provides location and security preferences. 
•	 Server Implementations inherit from “InterfaceMgr” class. 

- Provides Authorization. 
• Server application uses a global instance of the Server object. 

- This object transparently interacts with the object services and 
provides functionality for object registration, protocol selection, 
naming and security preferences, cleaning up and listening for 
client requests. 

- It also uses a Server Manager to select a server implementation 
when multiple implementations of the server object exists. 

705-CD-003-001 NH-15 



DOF Benefits 

• Location transparency 
• Invocation independence 
• Network based security 
• Heterogeneous & Interoperable 
• Supports OO paradigm 
• Generic class libraries with default behavior 
• Customizable by application developer for specialized behavior 
• Transparent interaction with the underlying Object Services 

705-CD-003-001 NH-16 



Writing Client/Server Applications 

DOF 
LibrariesCompile & Link 

Client 
Executable 

Client Development 

Client Obj. Def. 
Client Obj. Impl. 

Client Stub 

Client Application 

1 

2 

Interface Definition 

IDL Compiler 

Interface Development 

6 

C 
L 
I 
E 
N 
T 

DOF/IDL generated files 
Programmer developed files 
DOF provided 

4C 

3A 

Server Obj. Impls. 
Server Application 

Server Obj. Def. 
Server Manager. 

Global Server 
Server Stub 

Server Development 

4B 

5 

Interface Definition 

IDL Compiler 

Interface Development 

Compile & Link
DOF 

Libraries 

3B 

1 

2 

S 
E 
R 
V 
E 
R 

4A 

Server

Executable


705-CD-003-001 NH-17 



Writing Client/Server Applications 
(cont.) 

1 •	 Define the client/server interface in Interface Definition Language (IDL) 
to specify remote procedures.2 

•	 Compile the IDL file to generate the following stub files containing 
- Client object definition 
- Client object implementation 
- Client stub for communications 
- Server object definition 
- Server Manager 
- A Global Server object 
- Server stub for communications 

3A { 

{3B 

705-CD-003-001 NH-18 



Writing Client/Server Applications 
(cont.) 

4A • Develop the server implementation 
- Identify all the different implementations the server is going to 

support. 
- Implement member functions for each implementation. 
- Customize authorization [optional]. 
- Create and populate Access Control Lists (ACL) with entries 

containing principal/group and associated permissions. This can 
be done programmatically or can be read from an ACL Database 
file [optional]. 

705-CD-003-001 NH-19 



Writing Client/Server Applications 
(cont.) 

4B • Develop the server application 
- Construct an instance of the server object. 
- Register the server object with the Global Server object. 
- Identify the protocols (tcp/udp) to be used in servicing the 

requests [optional]. 
- Specify the maximum number of threads the service can run to 

execute the user specified services concurrently [optional]. 
- Register the authentication information [optional]. 
- Establish separate server identity [optional]. 
- Register the binding information for each combination of the 

interface name , protocol, and implementation in the local (CDS) 
namespace [optional]. 

705-CD-003-001 NH-20 



Writing Client/Server Applications 
(cont.) 

- Register the binding information in foreign namespaces [optional]. 
- Start a separate thread and go into a listen loop and wait for 

incoming requests. 
- Wait for the thread to finish or wait for a shutdown message or user 

interrupt (kill signal). 
- Remove the binding information from namespace(s) and exit 

gracefully. 
• Compile the server main and the server implementation. 
•	 Link them with the stub files and DOF libraries to generate the 

executable. 
•	 Run the executable or alternatively, let the Lifecycle Service run it on 

demand. 

5 

705-CD-003-001 NH-21 



Writing Client/Server Applications 
(cont.) 

• Develop the client 
- Client object provides several constructors to identify servers. 

Interface 
CDS name 
Host address and protocol 
Object reference 
Binding handle 

- Instantiate local client object to locate and access server object 
through one of the above constructors. 

- Set client security preferences [optional]. 
- Invoke methods in the local client object. 

•	 Compile and link client source with IDL generated client class, runtime 
stubs, and DOF class libraries. 

4C 

6 

705-CD-003-001 NH-22 



Writing Client/Server Applications 
(Summary) 

• Define the interface between the client and the server. 
• Develop the server implementation(s). 
• Develop the server application that initializes the server object(s). 
•	 Develop the client application that invokes methods in the local client 

object (proxy). 
•	 Compile and Link the object files with DOF libraries to produce server 

and client executable. 
• Run the server executable which listens continuously. 
• Run the client application to create client object and make calls to it. 

705-CD-003-001 NH-23 



Roadmap 

• Common Facilities 
• Object Services (OS) 
•	 Distributed Object Framework (DOF) 

- Client Server Concepts 
- Interface 
- Client/Server Application Development 

•	 Communication Mechanisms 
- Message Passing 
- Deferred Synchronous Message Passing Scenario 
- Communication Mechanisms Summary 

705-CD-003-001 NH-24 



Communication Mechanisms 
Three ways of transferring data from “Sender” to “Receiver” 

• Synchronous 
- Sender waits for Receiver to complete processing and return the 

results (blocking). 
- Provided by DOF. 
- Used for normal remote method invocation. 

• Asynchronous 
- Sender makes a call to send data to the Receiver and continues 

processing (non blocking). No results are returned. 
- Provided by Message Passing Service. 
- Used for transfer of large data. 

• Deferred synchronous 
- Same as asynchronous, except data is processed at the remote end 

and the sender can receive the result at a later time (non blocking). 
- Provided by Message Passing Service. 
- Used for process intensive remote applications. 

705-CD-003-001 NH-25 



Message Passing 

• Need determined from extensive discussions with FOS. 
•	 Channels data across processes in a heterogeneous environment 

through intermediary message queues. 
• Supports Asynchronous and Deferred Synchronous mechanisms. 
• Coexists with DOF and makes use of Naming and Security services. 
• Sender and Receivers are coupled as opposed to Event service. 
• Guaranteed delivery of data. 
• Supports priorities & persistence. 
• Implementation using COTS/custom. 

705-CD-003-001 NH-26 



 Deferred Sync. Message Passing 
Scenario 

11 

Message Kernel Message Kernel 

FOS UIOAR 

Namespace 

MQ 

FOS OA 

Security 

Host A Host B 

Message 
Queue 

2 

1 

4 

3 

5 97 

6 

108 

705-CD-003-001 NH-27 



Deferred Sync. Message Passing 
Scenario (cont.) 

FOS User Interface Off-line Analysis Request (UIOAR) process 
requests the local message kernel to create a message queue with a 
unique name “uioar”. 
The message kernel consults with Namespace to check if “uioar” 
message queue already exists. 
The message kernel creates a new message queue (“uioar” doesn’t 
exist yet). 
The message kernel registers the newly created “uioar” message 
queue in the Namespace. Returns a handle of “uioar” to the UIOAR 
process. 
FOS Off-line Analysis (OA) process requests its local message kernel 
to get the address of the “uioar” message queue. 
The local message kernel consults with the Namespace and returns a 
handle of the existing “uioar” message queue to the OA process. 

1 

2 

3 

4 

5 

6 

705-CD-003-001 NH-28 



Deferred Sync. Message Passing 
Scenario (cont.) 

OA process registers interest with the “uioar” message queue in 
receiving any messages that are address to it. 

The UIOAR process sends a Deferred Synchronous message addressed 
to the OA process and gets a unique ticket from the message kernel to 
redeem results at a later time. The UIOAR continues processing. 

The message kernel sends the data to the OA process along with the 
same unique ticket it sent to the UIOAR (“uioar”). 

The OA process analyses the data at a later time and returns the result 
and the unique ticket back to the message kernel. 

The UIOAR process periodically polls the message kernel to check if 
the results are available and obtains them by presenting the unique 
ticket. 

8 

7 

9 

11 

10 

705-CD-003-001 NH-29 



Communication Mechanisms 
Summary 

Synchronous 
(DOF) 

Asynchronous 
(Msg Passing) 

Deferred 
Synchronous 
(Msg Passing) 

Events 
(Object 
Services) 

Blocking yes no no no 
Return results yes no yes no 
Designated receivers yes yes yes no 
Multiple receivers no yes no yes 
Guaranteed yes yes yes n/a 
Acknowledgment yes yes yes no 
Argument types supported 

types 
byte stream byte stream byte 

stream 
Callbacks n/a maybe maybe no 
Priorities n/a yes yes no 
Store/forward n/a yes yes yes 
Large data yes yes yes no 
Receiver listens yes yes yes yes 
Receiver monitors no yes yes no 
Process intensive no n/a yes n/a 

705-CD-003-001 NH-30 


